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ABSTRACT 

 
This paper provides an overview of the draft joint Australian and New Zealand standard AS/NZS 2327, which 
will be the first harmonized standard between Australia and New Zealand for the design of steel-concrete 
composite buildings. Once published, this standard will replace the composite design provisions given in the 
existing standards AS 2327.1 and NZS 3404. As Chairs of the Committees responsible for AS/NZS 5100.6 
and AS/NZS 2327, the authors of this paper present the challenges faced from the introduction of concrete 
compressive strengths up to 100 MPa together with quenched and tempered steels with a yield strength up to 
690 MPa. Perhaps one of the most innovative aspects is that this standard is one of the few international limit 
state composite design standards that is underpinned by rigorous structural reliability analyses. It is anticipated 
that the draft for public comment document will be published in early 2016. 
        

Introduction 
 
This paper provides an overview of the new Australasian composite design standard for buildings 
AS/NZS 2327 (AS/NZS 2327 201X), which is currently being prepared for public comment and is scheduled 
for publication in 2016. Building on earlier steel design standard harmonization initiatives, such as the cold-
formed steel structures standard AS/NZS 4600 (AS/NZS 4600 2005) and the forthcoming steel and composite 
bridge standard AS/NZS 5100.6 (AS/NZS 5100.6 201X), AS/NZS 2327 is the first joint Australian and New 
Zealand design standard for composite buildings. It has been a catalyst for further harmonization activities in 
design standards for steel construction and, in the future, it is hoped that this work may lead to a bringing 
together of the existing AS 4100 (AS 4100 1998) and NZS 3404.1 (NZS 3404.1 1997) into a joint Australian 
and New Zealand steel structures standard. 
 
The project proposal submitted to Standards Australia was initially entitled “Suite of Standards for Composite 
Structures for use in Buildings and other non-bridge infrastructure incorporating existing AS2327.1-2003, 
AS2327.2-201X, AS2327.3-201X and ASS2327.4-201X”. The current draft of AS/NZS 2327 consists of 10 
Sections and several Appendices. The structure is presented below in the following subheadings. Where 
significant changes have been made compared to the existing AS 2327.1 and NZS 3404, these are highlighted 
and a brief overview of the background work is given.  

 
Section 1 - Scope, Materials, Limit States And Methods Of Structural Analysis 

AS/NZS 2327 is concerned with the design of steel-concrete composite members and floors in buildings. In 
addition, for consistency with the concrete structures design standard AS 3600 (AS 3600 2009) and 
NZS 3101 (NZS 3101 2006), concrete compressive cylinder strengths f′c up to 100 MPa are permitted. Also, 
for consistency with the Australian steel structures standard AS 4100, structural steel with a yield strength fy 
up to 690 MPa is allowed. The magnitude of these material strengths is much higher than permitted by other 
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international design standards on composite construction such as Eurocode 4 (EN 1994-1-1 2004) and the 
North American specification for structural steel in buildings (ANSI/AISC 360-10 2010), which meant that, in 
the development of the appropriate design models, AS/NZS 2327 is underpinned by rigorous structural 
reliability analyses to enable the appropriate capacity factors to be calculated. As a consequence of this, 
AS/NZS 2327 is one of the few Australasian standards that responds to the National Construction Code 
(NCC 2015), which requires structural reliability Verification Methods to be used in demonstrating the 
structural reliability inherent in new documents proposed for referencing in the NCC. 
 
A design life of 50-years is assumed. In a similar manner to North American practice, a global factor 
approach is adopted in Australasian standards where the design resistance is calculated by multiplying the 

nominal (characteristic) resistance by a capacity reduction factor  (cf. the European partial factor approach, 

where  = 1/M). Whilst this approach is simple to apply in structural steel and reinforced concrete design, it 
can prove problematical to apply in composite design as the equations for nominal capacity can consist of up 
to four different materials. As a consequence of this, the existing AS 5100.6 (AS 5100.6 2004) adopts a 
hybrid approach, where the capacity factors in composite columns are applied to the individual material 

components with  for structural steel together with reinforcing steel and c for concrete. This hybrid 
approach is maintained in AS/NZS 2327. Finally, in the interests of international harmonization, the 
nomenclature follows the ISO 3898 format (ISO 3898 2013), unless the change to a well-known variable 

could cause confusion (e.g. fc is maintained). 
  

Section 2 - Design of Composite Slabs 
Whilst reference was made to BS 5950-4 (BS 5950-4 1994) or Eurocode 4 in NZS 3404, to ensure that all of 
the required provisions to design a composite building are contained within a single document, AS/NZS 2327 
provides rules for composite slabs. A wide range of sheeting types that can be used in composite slabs is 
permitted (see Figure 1). 
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(b) 

 
(c) 

 

 

Figure 1.    Profiled sheeting types permitted in AS/NZS 2327 (a) re-entrant (b) open trough (c) clipped-pan. 
 
Whilst the traditional m-k method is supported, the partial connection method is promoted in AS/NZS 2327 
due to the following shortcomings in the m-k method: 
 

(i) The results contain all the influencing parameters, such as materials, slab geometry and 
composite action; however, it is not possible to separate them from one another.  

(ii) The methodology is not based on a mechanical model and is therefore less flexible than the 
partial connection method. For example, the benefit of including reinforcement bars, end 
anchorage, etc. cannot be quantified unless additional tests are undertaken that include these 
variables.  

(iii) The method of evaluation is the same whether the longitudinal shear behaviour is ductile or 
brittle. The use of a 0.8 penalty factor for brittle behaviour that is recommended in Eurocode 4 
does not adequately reflect the advantage of using good mechanical interlock, owing to the fact 
that the advantage increases with span.  

(iv) Other loading arrangements that differ from the test loading can be problematical. 
 
Point (iv) is worthy of some note by designers. From investigations by the first author (Hicks 2008) it has 



been found that for the case when concentrated loads are applied at a distance from the support Lp that is 
less than that provided in the tests to evaluate the longitudinal shear resistance of the sheet Ls (i.e. Lp < Ls), 
the resistance of the composite slab can be overestimated using the m-k method.  
 
Unlike Eurocode 4, the capacity factor for the longitudinal resistance of composite slabs has been directly 
evaluated for AS/NZS 2327. From an investigation of 61 Australasian composite slab tests, interim results 

from reliability analyses suggests that a capacity factor of around  = 0.6 is appropriate (which is lower than 

the recommended value in Eurocode 4 of  = 0.8). Furthermore, from Australian research on monitoring the 
long term behaviour of composite slabs it has been found that, from the presence of the profiled steel 
sheeting effectively acting as a ‘seal’ to the concrete, non-uniform shrinkage can result in higher deflections 
than anticipated (Al-Deen et al. 2015; Ranzi et al. 2013a; Ranzi et al. 2013b). As a result of this world-
leading research, serviceability limit state design provisions have been developed and are presented in 
AS/NZS 2327. 
 

Section 3 - Design of Composite Beams 
 
In both Australian and New Zealand practice, historically, composite beams have been used up to simply-
supported spans of 12 m. However, current and future practice will require a higher demand for ductility at 
the shear connection due to: longer spans; higher strength steel; fewer shear connectors (due to shape of 
the profiled steel sheeting and number of available positions to weld the studs); or when asymmetric steel 

sections are used. As a result of this, rules for the minimum degree of shear connection are provided min.  
 
The degree of shear connection is defined by: 

fcc
NN

,
   (1) 

where Nc is the design value of the compressive force in the concrete given as nPRd, Nc,f is the design value 
of the compressive force in the concrete with full shear connection (which is the lesser of Aafyd and 
0.85fcdbeffhc), n is the number of shear connectors from the point of zero moment to the point of maximum 

moment, PRd is the design resistance of a shear connector (PRd = PRk), Aa is the cross-sectional area of the 

steel beam, fyd is the design yield strength of the steel (fyd = fy) and fcd is the design compressive strength of 

the concrete (fcd = cfc). 
 

 



Figure 2.    Design methods given in AS/NZS 2327 for simply-supported composite beams. 
The bending resistance of composite beams may be evaluated using rigid plastic theory, non-linear theory 
and elastic analysis. The different design methods that will be permitted in AS/NZS 2327 are shown 
graphically in Figure 2, together with the corresponding stress distributions for a composite beam with a solid 

slab. Full shear connection occurs at Point C in Figure 2(a), which corresponds to  = 1.0. From equilibrium 
of the stress blocks, the three possible positions for the plastic neutral axis are shown by (i), (ii) and (iii) in 
Figure 2(c).  
 

For cases when  ≥ min, the simple interpolation method may be used, where the design moment resistance 

MRd is evaluated by finding  and interpolating between Point A and C in Figure 2(a) (Point A is given by the 
design plastic moment resistance of the structural steel section Mpl,a,Rd alone). The equilibrium method, given 
by the convex curve ABC, is a less conservative alternative. In this case, the plastic neutral axis has two 
possible positions within the steel section given by (ii) and (iii) in Figure 2(d). The design lines AC and ABC 
are based on the assumption that the effective areas of the steel and concrete can reach their design 
strengths before the concrete begins to crush. AS/NZS 2327 assumes that there may be a possibility for 
premature crushing of the concrete if fy ≥ 450 MPa and the ratio xpl / h is greater than 0.4. In these 

circumstances, the design resistance moment should be reduced by the factor  given in Figure 2(b).  
 

In the rare cases when  < min, or for cases when the characteristic slip capacity of an individual shear 

connector is less than 6 mm, the shear connection is deemed to be ‘non-ductile’. The design line for 
unpropped and propped construction is given in Figure 2(a) by lines DEC and 0FC, respectively. Point F is 

defined by the design elastic moment resistance for propped construction Mel,p,Rd and el,p, which 
corresponds to the point where the stresses in the outermost fibre of the section reach fcd or fyd, as shown in 
Figure 2(e). For Point E, initial stresses from the bending moment applied to the structural steel section Ma,Ed 

during the construction stage at Point D reduce the design elastic moment resistance Mel,u,Rd and the 

corresponding value of el,u.  
 
The appropriate capacity factors for the design models presented in Figure 2 are currently under 
development. However, from structural steel produced by the main suppliers to the Australasian market that 
are independently third-party certified (to ensure that minimum levels of quality control and traceability are 
being maintained), interim results from reliability studies indicate that the appropriate capacity factors for 

steel and concrete are  = 1.0 and c = 0.75, respectively. In addition, rules for continuous composite beams 
are provided, which provide benefits for reducing beam depth and controlling deflections. 
 
The most common form of shear connector in composite construction is the headed stud. A recent structural 
reliability study was undertaken specifically for AS/NZS 2327 and AS/NZS 5100.6 (Hicks and Jones 2013), 
which considered the results from 113 push tests. This work demonstrated that the following equations for 
the design shear capacity PRd can be used for stud connectors and bolts embedded in solid concrete slabs 
and encasements with f'c ≤ 100 MPa:  

ucbsRd fdP 270.0   (2) 

or 

ccybsRd EfdP  229.0   (3) 

where  is the capacity reduction factor, which may be taken as  = 0.8, dbs is the nominal diameter of the 
shank of a stud connector, but 16 mm ≤ dbs ≤ 25 mm; fuc is the ultimate tensile strength of the stud material, 
but not greater than 500 MPa; f'cy is the characteristic strength of the concrete at the age considered, but 
16 MPa ≤ f'cy ≤ 80 MPa; Ec is the modulus of elasticity of concrete at the age being considered, which may 

be taken as:  
cmic

fE 043.02.1  for fcmi ≤ 40 MPa; or  12.0024.02.1 
cmic

fE   for fcmi > 40 MPa,  is 

the density of concrete (kg/m³) and fcmi is the mean value of the in situ compressive strength. 
 

Section 4 - Design of Composite Columns 
Although design rules for composite columns are available within AS 5100.6, many designs of Australasian 
buildings have historically relied on overseas standards, such as Eurocode 4. In AS/NZS 2327 the design of 
composite columns has been formalized and extended beyond the scope of many international standards by 
permitting f′c ≤ 100 MPa and fy ≤ 690MPa. This has been achieved by recalibrating the capacity factors in AS 
5100.6 for a target reliability of β = 3.04 based on an extensive database of 1,583 composite column tests 
(Kang et al. 2015).  
 
The design capacity of a composite column subjected to combined compression and bending is determined 
from an interaction curve (see Figure 3). The interaction curve can be obtained for a short composite column 
by considering several possible positions of the neutral axis within the cross-section and determining the 



internal forces and moments from the resulting plastic stress blocks (Figure 3(a)). However, sufficient 
accuracy in estimating the effects of combined compression and bending may be found by constructing the 

interaction curve shown in Figure 3(b) from 4 points. Under an applied force N* equal to cNus, the horizontal 
co-ordinate μcMs represents the moment due to imperfections within the column, otherwise known as the 
‘imperfection moment’. In this case, it is important to recognize that the moment capacity of the column has 
been fully utilised in the presence of the imperfection moment; the column, therefore, cannot resist any 
additional applied moment. However, the influence of the imperfections decreases when the axial load ratio 

is less than c, and it is assumed to vary linearly between n and c. For an axial load ratio less than n, the 
effect of imperfections is neglected. Therefore, from Figure 3, for a given applied force N*, the available 
capacity to resist the applied moment is given by µMS.  
 

 
(a) 

 
(b) 

Figure 3.    Compression and uniaxial bending (a) interaction curve (b) interaction curve with linear 
approximation. 

 
Australasian research work on the flexural stiffness of composite columns has resulted in AS/NZS 2327 
departing from other international composite design standards. From a structural reliability study based on a 
database of 100 composite column tests (Aslani et al. 2015), it is proposed to base the calculation of flexural 
stiffness in the new standard on the Japanese (AIJ 1997) and American reinforced concrete (ACI 318-10 
2010) provisions. These rules result in lower predictions than either Eurocode 4 or AISC 360-10 and more 
accurately reflect the cracked section properties of composite columns. 

 
Section 5 – Connections 

Composite connections resist moment by generating a couple between their tension and compression 
components. The mechanics are very similar to those for non-composite moment connections, with the slab 
reinforcement effectively acting like an additional row of bolts in an extended end plate connection. In order 
to provide reliable moment-rotation characteristics, the reinforcement bars must be properly anchored and be 
capable of accommodating significant amounts of strain before fracture. Design rules for designing 
composite connections are currently being finalized within AS/NZS 2327. 
 

Section 6 - System Design for Serviceability 
Whilst significant effort is paid to limiting the deflections of the individual members, the deflection of the 
complete floor system can sometimes be overlooked. To remedy this situation, provisions on the system 
behaviour of complete floors are provided. In addition, over the last 10-years, there has been significant 
improvements in the development of design rules for controlling human-induced floor vibrations (Smith et al. 
2009). In order to formalise the different procedures, design provisions are given within AS/NZS 2327.  
 

Section 7 - System Design for Fire Resistance 
Design rules on the fire design of composite slabs, composite beams and composite columns are given in 
the forthcoming standard. Like most of the standard, the section will offer a tiered approach from simple 
tabular methods to advanced methods, which may require finite element analyses. As cellular beams are 
becoming more popular in New Zealand these members will be covered in AS/NZS 2327; in particular, the 
unusual feature of the web-posts between web-openings heating up more quickly than conventional solid 
web beams in fire, resulting in stability considerations being required (ASFP 2010). 
  
As well as individual member design, AS/NZS 2327 will be the first standard in the world to formalize the 

1.0

0 1.0

 

   

 

  

μ

μc μ*

αc

α*

αn

Cross-section

Interaction curve

 

   

1.0

1.0

A

C

D

B

 

  

μ

μc μ*

αc

α*

αn



Slab Panel Method (SPM) (Clifton 2006), which is otherwise known as the Cardington method (Newman et 
al. 2006) or membrane action of composite structures in fire (Vassart and Zhao 2013). The method has been 
specifically developed for composite floors and permits the applied fire protection to be eliminated from 
secondary beams, providing that the supporting primary beams are protected. The two potential yield line 
mechanisms are shown schematically in Figure 4.   
 

 
(a) 

 
(b) 

Figure 4. Slab panel yield line mechanism (a) compressive failure of concrete (b) tensile failure of 
reinforcement. 
 

Section 8 – Construction 
To ensure that the design assumptions remain valid (i.e. the magnitude of the capacity factors), minimum 
standards of workmanship are required in terms of the material and geometrical tolerances. Unlike the 
existing AS 4100 and NZS 3404, it is expected that instead of having a section dedicated to construction, 
reference will be made to the forthcoming AS/NZS 5131 (AS/NZS 5131 201X), which will reflect international 
best practice of specifying minimum levels of quality control and traceability of materials depending on the 
Importance Level of the structure (ISO/CD 17607 2015). 
 

Section 9 - Load Testing 
Due to the focus placed on design assisted by testing in composite construction, unlike AS 4100 and NZS 
3404, more comprehensive provisions are given within the appendices to AS/NZS 2327.  
 

Section 10 - System Design for Seismic Behaviour 
This section has been strongly shaped by contributions from New Zealand industry, academics and 
practitioners. Full details on the contents of this section are presented in an accompanying paper to this 
conference (Cowie, 2015). 

Appendices 
Several appendices are given in the forthcoming AS/NZS 2327. To support long-span cellular beams, an 
appendix that provides design provisions for beams with regular web-openings is provided (Lawson and 
Hicks, 2011); as well as providing equations for designing beams of this type in ambient temperature 
conditions, additional thermal data can be used in conjunction with this structural model to determine limiting 
temperatures in fire conditions.  
 
To facilitate future improvements to design models for composite construction, Appendices for standard tests 
are defined for composite slabs, profiled steel sheeting and shear connectors. Moreover, to ensure that 
integrity, insulation and resistance criteria are consistently achieved rules for loaded fire tests are also 
provided. Finally, to ensure that the required reliability indices specified in AS/NZS 1170.0 (AS/NZS 1170.0 
2002), AS 5104 (AS 5104 2005) and ISO 2394 (ISO 2394 1998) for a 50-year design period are achieved, 
rules are provided for evaluating the design resistance of members from the standard tests described in the 
preceding appendices. 
 

Conclusions 
The draft AS/NZS 2327, is one of the few international limit state design standards on composite 
construction that is underpinned by rigorous structural reliability analyses. This was necessary, as following 
the international trend of using less natural resources, design rules for higher strength steel and concrete are 
given. The new design rules within the proposed AS/NZS 2327 provide greater alignment with international 
best practice and, in some cases, significant improvements are given. 

 



Acknowledgments  
 
The authors would like to thank the members of the BD-032 Committee for all their hard work to date; in 
particular, the Standards Australia Project Manager, Andrew Kulasingham. As members of the BD-032 
Committee, the present authors have prepared this paper according to what they consider to be the 
significant changes to existing practice from the introduction of AS/NZS 2327. However, the standard is still 
being prepared for public comment and, as a consequence of this, may be subject to change. Any views 
expressed in this paper may not necessarily reflect those of the other members of the Committee, nor those 
of Standards Australia and Standards New Zealand.  
    
 

References 
 
ACI 318-10, 2010, Building code requirements for structural concrete and commentary. American Concrete 

Institute, Michigan, USA 
Al-Deen S, Ranzi G, Uy B, 2015, Non-uniform shrinkage in simply-supported composite steel-concrete slabs, 

Steel and Composite Structures: an international journal, 18(2), 375 - 394 
ANSI/AISC 360-10, 2010, Specification for Structural Steel Buildings. American Institute of Steel 

Construction, Chicago, USA  
Architectural Institute of Japan (AIJ), 1997, Recommendations for design and construction of concrete filled 

steel tubular structures, Tokyo, Japan 
Association for Specialist Fire Protection (ASFP), 2010 Fire Protection for Structural Steel in Buildings (Fifth 

edition), Kingsley, UK 
AS 3600: 2009, Concrete structures, Standards Australia, Sydney, Australia. 
AS 4100: 1998, Steel structures, Standards Australia, Sydney, Australia. 
AS 5100.6: 2004, Bridge Design, Part 6: Steel and composite construction, Standards Australia, Sydney, 

Australia 
AS 5104: 2005, General principles on reliability for structures, Standards Australia, Sydney, Australia. 
Aslani F, Lloyd R, Uy B, Kang W-H, Hicks S. 2015, Statistical calibration of safety factors for flexural stiffness 

of composite columns. Steel and Composite Structures: an international journal (accepted for 
publication) 

AS/NZS 1170.0: 2002, Structural Design Actions, Standards Australia/Standards New Zealand, 
Sydney/Wellington, Australia/New Zealand. 

AS/NZS 2327: 201X, Composite steel-concrete construction for buildings, Standards Australia/Standards 
New Zealand, Sydney/Wellington, Australia/New Zealand. 

AS/NZS 4600: 2005, Cold-formed steel structures, Standards Australia/Standards New Zealand, 
Sydney/Wellington, Australia/New Zealand.  

AS/NZS 5100.6: 201X, Bridge Design, Part 6: Steel and composite construction, Standards 
Australia/Standards New Zealand, Sydney/Wellington, Australia/New Zealand 

AS/NZS 5131: 201X, Structural steelwork—Fabrication and erection, Standards Australia/Standards New 
Zealand, Sydney/Wellington, Australia/New Zealand 

BS 5950-4: 1994 Structural use of steelwork in building. Code of practice for design of composite slabs with 
profiled steel sheeting, British Standards Institution, London, UK. 

Clifton GC, 2006 Design of composite steel floor systems for severe fires, HERA Report R4-131, HERA, 
Manukau City, New Zealand. 

Cowie K, 2015, Australian/New Zealand Standard for Composite Structures, AS/NZS 2327, Seismic 
Provisions Development, Steel Innovations, Auckland, 3-4 September 2015 

EN 1994-1-1: 2004, Eurocode 4: Design of composite steel and concrete structures – Part 1-1: General rules 
and rules for buildings, European Committee for Standardization, Brussels, Belgium 

Hicks S., 2008, Composite slabs. Eurocodes: Background and applications Workshop, 18-20 February 2008, 
European Commission DG Enterprise and Industry, Joint Research Centre (JRC) and European 
Committee for Standardization (CEN), Brussels, 1-24, 
http://eurocodes.jrc.ec.europa.eu/doc/WS2008/Hicks_2008.pdf  

Hicks SJ, Jones AS, 2013. Statistical evaluation of the design resistance of headed stud connectors 
embedded in solid concrete slabs, Structural Engineering International, 23(3), 2013, 269-277. 

ISO 3898: 2013 Bases for design of structures -- Names and symbols of physical quantities and generic 
quantities, International Organization for Standardization, Geneva, Switzerland. 

ISO 2394: 1998 General principles on reliability for structures, International Organization for Standardization, 
Geneva, Switzerland. 

ISO CD 17607: 2015 Execution of Steel Structures - Technical Requirements, International Organization for 
Standardization, Geneva, Switzerland. 

Kang W-H, Uy B, Tao Z, Hicks S. 2015, Design strength of concrete-filled steel columns. Advanced Steel 
Construction. 2015. 11(2), 165-184 

http://eurocodes.jrc.ec.europa.eu/doc/WS2008/Hicks_2008.pdf


Lawson RM, Hicks SJ, 2011, Design of Composite Beams with Large Web Openings: In Accordance with 
Eurocodes and the UK National Annexes. SCI Publication 355, Steel Construction Institute, Ascot, 
UK. 

National Construction Code (NCC), 2015, Australian Building Codes Board (ABCB) Canberra, Australia 
NZS 3404.1: 1997, Steel structures standard, Standards New Zealand, Wellington, New Zealand 
NZS 3101.1: 2006, Concrete structures standard, Standards New Zealand, Wellington, New Zealand 
Newman GM, Robinson JT, Bailey CG, 2006 Fire Safe Design: A New Approach to Multi-Storey Steel-

Framed Buildings (Second Edition), SCI P288, Steel Construction Institute, Ascot, UK. 
Ranzi G, Al-Deen S, Ambrogi L, Uy B, 2013a, Long-term behaviour of simply-supported post-tensioned 

composite slabs, Journal of Constructional Steel Research, 88, 172 - 180 
Ranzi G, Al-Deen S, Hollingum G, Hone T, Gowripalan S, Uy B, 2013b, An experimental study on the 

ultimate behaviour of simply-supported post-tensioned composite slabs, Journal of Constructional 
Steel Research, 89, 293 – 306 

Smith AL, Hicks SJ, Devine PJ, 2009. Design of Floors for Vibration: A New Approach (Revised edition). SCI 
Publication 354, Steel Construction Institute, Ascot, UK 

Vassart O, Zhao B, 2013 Membrane action of composite structures in case of fire, European Convention for 
Constructional Steelwork, Brussels, Belgium. 

 


