Singapore – a new downtown Steel Innovations 2015 - SCNZ

04 September 2015 Brendon McNiven, Principal, Buildings

Laos Vietnam Thailand Cambodia Philippines Malaysia Brunei Singapore PNG Indonesia Australia

Where we are in South East Asia

Singapore An artificial diamond created by stress Indonesia Malaysia Singapore 1,900,000 sq km • 329,847 sq km • 710 sq km •

• 5.0 m people

27.7 m people

•

• 230 m people

Singapore Has 3 Resources Location, Land and People

Maximize Land Utilization

Land = 710.4 sq km (22% reclaimed) People = 5.0m (3.3m citizens)

8th Jul 2010

EDB (Economic Development)

URA (Planning)

STB (Tourism)

LTA (Transport)

SLA (Land)

Singapore

NParks (Parks and Trees)

KALLANG BASIN

Existing Marina Promenade

GARDEN AT 15 ha

> Gardens by the Bay East

> > GARDEN AT MARINA EAST 32 ha

> > > Currently undeveloped secondary forested area

OPIDIOL KG

MOTOR

.............

MARINA CHANNEL

Bay South smaller ponds at Marina South Promenade

Existing Marina Padang

Existing Marina City Park/ GARDEN AT MARINA SOUTH 54 ha

lens by the **H**

SingaporeFlyer

Existing Marina South F&B and Entertainment Zone

SINGAPORE

Double

Downtown MRT Line

Bay Promenade

MARINA BAMarina Bay Sands

Existing CBD (Shonton Way

The Singapore Flyer

Tourse a

KALLANG BASIN

Existing Marina Promenade

GARDEN AT MARINA CENTRE

SingaporeFlyer

MARINA BAY

Existing CBD (Shenton Way) 1 -1

Currently undeveloped secondary forested area

32 ha

MARINA CHANNEL

2 smaller ponds at Marina South Promenade

GARDEN AT MARINA EAST

Existing Marina Padang

Existing Marina City Park GARDEN AT MARINA SOUTH 54 ha

Existing Marina South F&B and Entertainment Zone

Private Developer led (Melchers Pty Ltd)

Government supported (STB/SLA)

\$200M

History & Evolution

Millennium Wheel Initial idea (architect led)

Millennium Wheel

Initial idea (structural feedback)

Competition Entry

Design Evolution

$E_{\text{FFICIENCY}} \Pi = \frac{OUTPUT}{\text{INPUT}}$

MEASURE	INPUT	OUTPUT	MEASURE
WEIGHT COST \$ COST ENV.	MATERIALS	AESTHETILS ON ITS OWN AS A PART OF THE ENVIRON,	APPEARANCE / PERLEPTION
COST \$	DESIGN	FUNCTION - PRIME (IN SERVICE)	(OPERATING COST No. PEOPLE PEOPLE HAPPINESS
COST \$ }	ENERCY	- SECONDARY (AFTER SERVICE)	{ RE-USABILITY { RESALE VALUE
		EXTERNAL EFFECTS	
		- IMMEDIATE ENVIRON.	DAMAGE TO PARK
		- BY PRODUCTS OF CONSTRUCTION	{ POLLUTION WASTE
		COLIETY	(TOUDDIEDO)

Design Evolution

Tension Wheels Superposition

Tension Wheels Understanding cause & effect

Millennium Wheel

Cables act to provide restraint to rim both laterally and torsionally (resisting applied loads and controlling rim compression buckling):

135m diam : 64 + 16 = 80 Cables:

- Lateral/Radial restraint & stiffness
- Torsional buckling restraint

Singapore Flyer

150m diam : 112 Cables performing both:

- Lateral/Radial restraint & Stiffness
- Torsional buckling restraint

Engineering-led design The final rim structure for the Singapore flyer was approximately 15% larger than its predecessor the London Eye, and used approximately 15% less steel.

Las Vegas High Roller

155m diam : 112 cables

Cables provide:

• Lateral/Radial restraint & Stiffness

Annulus action in rim provides:

• Torsional stiffness / Stability

Erection

SINGAPOLO PLYON ERECTION OPTION 2 SHEET ' SK/JEB/188203/2

(1) Installed rim segments are jacked in for installation of subsequent segment.

② This process is repeated with installation of all segments

(1) Temporary struts installed every 5th segment.

② Tie-member used to prevent rim buckling.

Completion of rim installation.

Laser technology was used in ensuring acceptable erection tolerances and in measuring the tensions in the prestressed spoke cables.

Marina Bay Sands [®] Integrated Resort

KALLANG BASIN

Existing Marina Promenade

GARDEN AT 15 ha

> ingaporeFl ver

SINGAPORE

Existing CBD (Shenton Way

MARINA BAY

Mari Bay S and

Existing Marina Padang

Existing Marina City Park/ GARDEN AT MARINA SOUTH 54 ha

Existing Marina South F&B and Entertainment Zone

GARDEN AT MARINA EAST

MARINA CHANNEL

2 smaller ponds at Marina South Promenade

32 ha

Currently undeveloped secondary forested area

Government Land & Gaming License release 3 month competition

(URA)

awarded Aug 2006

completed Feb 2011

US\$5.5b

340m deck structure sitting on top of 3 x 55 storey hotel towers...

with a 65m cantilever at one end...

B NS/11

12

...built on up to 35m of reclaimed land/marine clay

Hotel Superstructure

Tower 1 – Wall Elevation

- ► 600mm thick typical RC shearwalls
- Concrete grade = 60 N/mm² (lower)
 50 N/mm² (upper)
- Floor concrete grade = 40 N/mm^2
- ► Height to L55 = 176.8 m
- Height to Skypark deck (L56) = 190 m
- ► Height to Skypark roof (L58) = 199.1 m

Deflection Studies

Location of Interest

- 1. Angular rotation at top of tower
- 2. Maximum deflection on elevation
- 3. Differential settlement between straight and curved wall
- 4. Differential settlement between adjacent wall bays

Fig 1 Deflection Shape of Tower 1

Deflection Studies

1. Angular rotation at top of tower

		Short-term	Long-term	
CASE		δ _A - δ _B (mm)	δ _A - δ _B (mm)	
(i)	DL+SDL+LL (w/ creep & shrinkage effect)	57	100	
(ñ)	100% elastic DL	26	26	
(iii)	Net Deflection [(i) - (ii)]	31 (0 = L/968)	74 (θ = L/405)	
(îV)	Net Deflection x15% contingency to account for staged construction effect [(iii) x 1,15]	36 (0 = L/833)	85 (θ = L/353)	

Fig 3 Item 1 --- Angular Rotation at Top of Hotel Tower

Sloping Tower

Déath Loades

Cantilever Construction

and the second			
	STATISTICS.		of start and of all and an
	and the section 1	I VIIIII I	
100 100			
1000			
		a second at a	a maintain and an a
		H wanted H	a second second
		a second a	
		E remain a	-
			I I mineration
		1 1 1 1 1	
		I variate	
		1	
STREET, STREET			
10			
40.00		1000	 Contractor
100 C		the second s	

Cantilever Construction

Segment 5 (24th December 2009)

SANDS SKYPARK

People - Testing under real excitation

INCOMENTAL PROPERTY.

groups of up to 160 people

Findings

Skypark Fast Facts:

- Skypark length
- Steel Tonnage
- Cantilever Length
- Cantilever Weight

100

340m 7,700t 65m 3,500t

Allinnum

Singapore Sports Hub
KALLANG BASIN

Existing Marina Promenade

MARINA CHANNEL

GARDEN AT 15 ha

> ingaporeFl ver

MARINA BAY

Marin Bav S and

> Existing Marina City Park/ GARDEN AT MARINA SOUTH 54 ha

Existing Marina Padang

Existing Marina South F&B and Entertainment Zone

GARDEN AT MARINA EAST 32 ha

Currently undeveloped secondary forested area

2 smaller ponds at Marina South Promenade

Existing CBD (Shenton Way)

Government led PPP (to replace old National Stadium)

DSPL / HSBC / Arup & DPA

\$1.2B

312m span dome

2 halves of Movable Roof in open position (secondary trusses under not shown for clarity)

Column pairs supporting Ring Beam & acting in portal action.

Thrust Block node

supporting roof on

Ring

Beam

Segment of Level 3 Ring Beam

Fatigue Considerations

12,800 cycles over 50 years (FOS of 2 on design)Local fatigue from bogie movement

Connection Break up

Group 1 (55%)

Single chord (457 or 355.6 CHS) +bracing

Group 2 (35%)

457 chord with 355.6 secondary chord or X-brace +bracing

Group 2 (10%)

At truss junctions many intersecting chords and bracing

non-FEA CHS connection design

Research

- CIDECT
- Eurocode 3
- American Petroleum Institute (API)
- American Welding Standard (AWS)
- Plus many papers

Chord Shear

Punching Shear

Brace Buckling

Failure mechanisms

Design methodology

Figure 2.18—Detail of Overlapping Joint (see 2.25.1.6)

Chard Danding Callure Modes for KK-Joints: (a)

Finite element modeling of complex connections

BIM on SSH

Combined model of structure, architecture and MEP ready to use for coordination, take-offs, visualisations, walk-throughs etc

Design Coordination

Services are especially difficult to visualise as the only views the architectural and structural teams traditionally see during the critical stages of the co-ordination process are the single line diagrammes. BIM makes problems such as low-headroom much more obvious.

Design Coordination

Arup Scope:

Sports venue design, civil, structural, fire and maritime engineering, acoustics, security and risk consulting, moving structures, geotechnics, feature lighting design, sports lighting, pedestrian modelling and turf consulting **Fast Facts:**

- 312m dia dome roof 85m above pitch
- **8000t of CHS steelwork**
- Over 20,000 steel elements
- 6 analysis models to cover different movable roof configurations
- Each analysis model with 1,5000 combination cases
- 2,500 fixed roof +1,000 movable roof +1,750 louvre connections

- Reconfiguration Athletics to Football in 48hrs

ARUP